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Charged colloids can behave as Yukawa systems, with similar phase behaviour. Using particle-resolved studies,
we consider a system with an unusually long Debye screening length which forms crystals at low colloid volume
fraction φ ≈ 0.01. We quantitatively compare this system with the Yukawa model and find that its freezing
point is compatible with the theoretical prediction but that the crystal polymorph is not always that expected.
In particular we find body-centred cubic crystals where face-centred cubic crystals are expected.

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Among the great successes in describing interactions between colloidal particles in suspension is the Derjaguin,
Landau, Verwey and Overbeek (DLVO) model [1]. Apart from short ranged interactions, this model treats charged
colloids as Yukawa particles. Thus colloids may be interpreted within a framework which encompasses a great
many other systems from the mesons which Yukawa was originally interested in [2] to dusty, or complex plasmas
[3, 4]. Indeed, as shown in Fig. 1, charged colloids and complex plasmas both exhibit the same phase behaviour
: under the right conditions both systems exhibit phases characteristic of the Yukawa system, that is to say fluid
(F) along with body-centred and face-centred cubic crystals (BCC and FCC respectively).

In the case of colloidal dispersions, there are more components than just the colloids : the particles are im-
mersed in a solvent, the electrostatic charge they carry is balanced by counter-ions (in colloidal dispersions, one
typically assumes charge neutrality) and salt ions, not to mention the liquid solvent in which the system is im-
mersed [3]. One can proceed to an effective one-component system where only the colloids are considered by
integrating out the degrees of freedom of the smaller species [5]. Here the liquid solvent has no impact on the
equilibrium phase behaviour (it acts to damp the dynamics of the colloids, leaving the system as non-inertial on
most reasonable timescales) [3]. However the effects of the ions do need to be integrated out, and this can be done
using the approach pioneered by Derjagiun, Landau, Verwey and Overbeek [1]. In addition to the effects of the
electrostatics, DLVO theory also includes other interactions between the colloids, such as van der Waals forces.
In our systems, these are not important, because the colloids are refractive index matched to the solvent which
reduces the effects of the van der Waals forces to a fraction to the thermal energy kBT . Any residual van der
Waals effects are suppressed by a polymer layer at the surface of the particle. The polymer layer is much thinner
(� 10μm) than the particle size [6] and thus the short ranged interactions may be treated as a hard core [7].
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2 I. Rios de Anda et al.: Low-density crystals in charged colloids

Fig. 1 Phase diagram of Yukawa systems. The fluid-solid phase boundary (solid line) is the analytic approximation [Eq. 5],
the dashed line at large κp denotes that its validity is limited by κp < 10. The approximate position of the BCC-FCC
crystal boundary is indicated by the dotted line. Narrow coexistence regions are not shown here. Symbols represent various
crystallization/melting experiments in colloidal dispersions [9, 10] (pink) and complex plasmas [11] (blue). Squares and
bullets indicate, respectively, BCC and fluid phases (as observed), arrows show the direction in which parameters varied
during the experiments. Triangles are FCC crystals. Characteristic snapshots of observed fluid and crystalline phases are also
shown [3].

In colloidal dispersions, the particle concentration is often high enough that steric interactions due to the finite
particle size can come into play [8], and it is appropriate to include the hard core uhc(r). The hard core Yukawa
interaction then reads

u(r) = uhc(r) + uy(r), (1)

uy(r) = εy
exp[−κ(r − σ)]

r/σ
. (2)

Here, the potential at contact (when the colloids touch) is given by

βεy =
Z2

(1 + κσ/2)2
λB

σ
, (3)

where Z is the colloid charge, and the inverse Debye screening length is given by κ=
√
4πλBρion, where ρion is

the number density of monovalent ions. The Bjerrum length

λB = βe2/(4πε0εr), (4)

is the distance at which the interaction energy between two electronic charges is kBT , where e is the electronic
charge, ε0 the permittivity of free space, and εr the dielectric constant.

In their investigations of hard core Yukawa phase diagrams, Hynninen and Dijkstra [8] showed that the effect
of the hard core was small in the case that freezing occurred at a colloid volume fraction φ � 0.3, i.e. that the
colloids are typically far enough apart from one another that short-range interactions are irrelevant. Example
interaction parameters would be (βεy = 20, κσ = 1.0). At lower concentrations, therefore, the system can be
treated as a point Yukawa system, as can also be the case with complex plasmas [3]. A point Yukawa treatment
where the hard core is neglected enables arbitrary Yukawa parameters to be represented in a 2d plot [12,13]. Here
we shall use the Yukawa (screened Coulomb) coupling parameter Γs and scaled inverse Debye length κp which
are defined below [3].
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In colloidal dispersions, the dominance of such long-ranged interactions means that there is no specific re-
quirement that strongly attractive but short ranged van der Waals interactions be suppressed and thus we are not
limited to sterically stabilised, refractive index matched systems. Water and ethanol are popular solvents and sil-
ica and polystyrene are popular materials for the colloids. As an aside, this indicates that the melamine particles
often used in complex plasma experiments are in principle no different to particles used in colloidal experiments,
moreover their size ranges overlap [3].

While the DLVO theory is only valid in the range that linearised Poisson-Boltzmann theory holds (weak
electrostatic interactions), higher charging can also be treated with a Yukawa interaction by using a renormalised
or effective charge that is smaller than the physical charge on the particles [14, 15]. Thus, providing the effective
colloid charge can be found, a Yukawa behaviour is recovered. Once the effective charge Zeff and Debye length
κ−1 are determined, a number of studies have been made in aqueous based systems finding excellent agreement
with the Yukawa model [16–19].

Behaviour inconsistent with the DLVO model has also been seen. The DLVO model recasts interactions
between multiple components into a one-component Yukawa treatment. Even after accounting for charge renor-
malisation, anomalous behaviour has been observed. In particular the observation of condensation like behaviour
of the colloids into a “colloidal liquid” and “colloidal gas”, with voids appearing in the system, was attributed to
“like charge attraction” [20]. A variety of explanations have been put forward to explain this phenomenon, many
arriving at the conclusion that the effective interaction between the colloids was attractive, a surprise for particles
with like charge [21–23]. However direct measurement with optical tweezers found no evidence of attraction,
rather that some earlier measurements (though not the original observation by Ito et al. [20]) may have been
influenced by artefacts [24, 25]. Among the few theoretical explanations to have withstood the test of time is
that of van Roij and coworkers who considered that the entropy of the salt ions might drive phase separation to
a colloid-rich and colloid-poor phase [26, 27]. Crucially, in van Roij’s treatment, at the two-body colloid-colloid
level, a repulsion between the particles is maintained : the (repulsive) Yukawa form in Eq. 2 is satisfied. The
entropic terms driving the phase separation do not feature in the (one-component) DLVO treatment because de-
grees of freedom of the small ions are integrated out and captured in a one-body term. Quantitative agreement
with van Roij’s predictions was recently found in a phase separating binary system whose behaviour would sim-
ilarly not be expected in a pure Yukawa picture [19]. Other deviations from DLVO behaviour include ion-colloid
decoupling leading to a macroscopic electric field which results in extended sedimentation profiles [28–30].

Of particular interest here is a mechanism originally put forward to account for the condensation effects ob-
served by Ito et al. [20]. While the two-body term between the colloids (Eq. 2) is repulsive, the three body
interactions induced between three colloids are attractive [31]. Such deviations from two-body behaviour have
been observed in experiment in the form of a perturbation to the fluid structure [32], and indications of non-
spherical interaction potentials in crystals at higher density [33]. Furthermore simulation work indicates that
including the three-body terms leads to an increase in the fluid region of the phase diagram at the expense of the
BCC phase [8, 34].

Now the self-dissociation of water means the ionic strength is � 10−7 Mol and additional contributions such
as counter-ions mean that a Debye screening length of κ−1 � 300 nm is typical in experiment. Since particle
resolved studies require colloid sizes of at least a micron, with aqueous solvents it is difficult to reach conditions
where the Debye length is comparable to (or greater than) the particle size appropriate for the regime where the
system behaves purely as a Yukawa system without significant contribution from the hard core uhc and other
e.g. van der Waals short range forces. However in solvents such as cycle hexyl bromide of interest here the
ionic strength can reach 10−12 Mol so the Debye length can be sufficient that micron-sized particles are far apart
and (point) Yukawa behaviour is found [9, 10]. In these systems, colloidal crystals of exceptionally low volume
fraction, where the inter particle spacing can run to tens of microns have been observed [9,35,36]. These systems
have also been observed to become dynamically arrested, and to fail to crystallise and thus form a glass at low
colloid density [37], as indeed have aqueous systems [18].

Here we consider the Yukawa parameters associated with such “low-density crystals”. Our purpose is to
make a quantitative comparison between the low-density crystals and the predictions of Yukawa theory in the
form of the equilibrium phase diagram [12, 13]. In particular we map our experimental data to generic Yukawa
parameters (Γs, κp) and compare the state observed in experiment to the theoretical prediction. We consider the
crystal polymorph observed with that predicted. Our analysis indicates that while the Yukawa phase diagram
predicts face-centred cubic crystals for some parameters, in our experiments we find body-centred cubic crystals
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4 I. Rios de Anda et al.: Low-density crystals in charged colloids

only. This contribution is organised as follows : in Section 2 we discuss our mapping procedure and assumptions,
in Section 3 we outline our experimental technique. We present our results in Section 4 and discuss these in
section 5.

2 Mapping to Yukawa theory

The comparison between charged colloids and complex plasmas is illustrated in Fig. 1. The main panel in Fig. 1
is the Yukawa phase diagram in the Γs, κp plane. Here we show literature data for complex plasmas [11] and
colloids [9, 10]. We emphasise that the colloidal particles illustrated in Fig. 1 are two microns in size. They
are thus effectively identical to particles used at the smaller end of complex plasma experiments [3]. The key
difference is thus the immersing medium, a liquid solvent rather than a plasma.

The freezing line in Yukawa systems is given with reasonable accuracy for κp < 10 [3] by

Γs(κp) =
106

1 + κp +
1
2κ

2
p

(5)

where the screened coupling parameter Γ(s) is the Yukawa interaction evaluated at the mean inter particle sepa-
ration ρ−

1
3 , uy(ρ

− 1
3 ) where ρ is the particle number density and κp is a scaled inverse Debye length, given by

κp=κσcρ
− 1

3 [3, 12, 13].
Here we assume the colloids take their saturated effective charge Zeff

sat. That is to say, the maximum charge
given under charge renormalisation. An approximate value is given by:

Zsat
eff =

(2 + κσ)σ

λB
(6)

which represents the effective colloid charge [3]. Thus the number density of ions can be estimated as the effective
charge number per colloidal particle due to the counter ions and that from salt and background ions ρsalt,

ρion = Zsat
eff ρ+ ρsalt. (7)

Now although no salt is added, some background ions are present, due for example to solvent self-dissociation.
Here we treat this contribution ρsalt as a free parameter and determine the scaled screening parameter as outlined
above. We shall see below that assuming agreement with the Yukawa freezing line enables the value of ρsalt =
10−10 m−3 which corresponds to 8.3 nMol. Finally, the evaluation of the Yukawa interaction at the mean
interparticle separation can be obtained from Eq. 2.

3 Experimental

We used poly(methyl methacrylate) (PMMA) colloids sterically stabilized with polyhydroxyl steric acid [38,39].
The colloids were labelled with fluorescent rhodamine dye to enable fluorescent imaging and had a diameter of
2000 nm and polydispersity of 5% as determined with static light scattering. Different volume fractions of the
particles were suspended in cyclohexyl bromide (CHB) whose dielectric constant εr = 7.92 and whose refractive
index is closely matched to that of the colloids enabling bulk 3d imaging. A rectangular glass capillary with
inner dimensions of 0.10 x 1.00 mm (Vitrocom) was filled with the suspensions and sealed on each end with
epoxy glue. The samples were studied with confocal laser scanning microscopy, CLSM (Leica SP5 fitted with
a resonant scanner), with 543 nm excitation using a NA 63x oil immersion objective. For qualitative imaging,
2D data set was recorded (512 x 512 pixels), whereas for particle tracking, a full scan of the capillary in the z
direction was obtained, providing 3D data sets, where care was taken to ensure the pixel size was the same in the
three planes.

4 Results

4.1 Phase behaviour and comparison with Yukawa theory

We show our comparison with Yukawa theory in Fig. 2 for the low-density crystals formed in this work. Com-
pared to previous work where the experiments were mapped to Yukawa parameters (Γs, κp), we access a new
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region of the phase diagram. We fit the ionic strength such that our lowest concentrations φ= 0.0055 and 0.01,
identified as fluids are consistent with the Yukawa prediction. We note that the path the state points take in the
(Γs, κp) space is not a straight line or even a smooth curve, nor even montonic. This is due to competing ef-
fects. Regadring the ionic strength, the added salt ρsalt in Eq. 7 is comparable to or smaller than the counter
ion contribution Zsat

eff ρ which means that the Debye length κ−1 drops as the volume fraction is increased so the
screening is stronger. However the increase in φ means the range at which the screened coupling parameter Γs

is evaluated, ρ−
1
3 , drops because the particles are (on average) closer together. The former acts to reduce Γs, the

latter to increase it. We note that the highest three densities (κp) are predicted to the FCC. We describe how we
determined the crystal structure in the following section.

Fig. 2 Phase diagram of Yukawa system studied in this work in comparison with previous studies [3]. Snapshots in (a) (b) (c)
correspond to volume fraction φ of 0.0055, 0.02 and 0.23 respectively and the state points in (Γs, κp) representation indicated
in the main panel. Lines are as in Fig. 1 : thick line is the freezing line [Eq. 5] and the thin dashed line approximately describes
the BCC-FCC transition. Arrows denote increasing volume fraction. Scale bars = 25 μm.

We are now able to quantify the Debye screening length κ−1 = 1.9μm and contact potential βεy = 1110
around freezing. This corresponds to a effective colloid Zsat

eff = 850. In particular the Debye length is bigger,
compared to aqueous systems and indeed to previous particle-resolved studies where it was around 0.200-1μm
[9, 10].

4.2 Identification of crystal structures at low packing fractions

For the analysis of the crystal structures particle tracking of the 3d data sets based on [40] was performed. Image
manipulation techniques are used in order to enhance the contrast and remove the noise from the experimental
datasets. The positions of the particles are identified through a maximization of the overlap between seeded
local gaussian kernels and the intensity profile of the particles. For this algorithm, an estimation of the size of
one particle is needed as input parameter, but no initial assumptions on the volume fraction are required. The
resulting coordinates are obtained with a resolution of 1 pixel (200 nm) in each spatial direction.

The coordinates extracted via particle tracking are used in order to perform an analysis of the crystalline
phases formed before the sedimentation of the sample. For this purpose, we employed the Steinhardt local
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6 I. Rios de Anda et al.: Low-density crystals in charged colloids

rotational invariants, also known as bond-orientational order parameters. These discriminate between different
possible crystal structures on the basis of spherical harmonics and have also been used for the detection of order
in complex plasmas [11, 41]. In particular, we consider the locally averaged order parameters q̄4, w̄4, q̄6 for
square and hexagonal order, where the local average allows to take into account the effect of second nearest
neighbours and to more sharply distinguish between different arrangements (see [42] for a detailed discussion on
the technique).

For each particle i, we perform a parameter-free detection of the nearest neighbours via a Voronoi tessellation
of the sample volume. This provides a list of the Nb(i) nearest neighbours over which the local order parameters
are calculated:

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij) , (8)

where Ylm(rij) are the spherical harmonics. Summing over the list of Ñb(i) particles identified by the neighbours
and the particle i itself one obtains the locally averaged order parameters

q̄lm(i) =
1

Ñb(i)

Ñb(i)∑
k=0

qlm(k), (9)

and summing over all the harmonics we finally get

q̄l(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2 . (10)

w̄l(i) =

∑
m1+m2+m3=0

(
l l l

m1 m2 m3

)
q̄lm1(i)q̄lm2(i)q̄lm3(i)

(∑l
m=−l |q̄lm(i)|2

)3/2
(11)

where the term in brackets is the Wigner symbol.
We focus our analysis on a bulk region discarding top, bottom and lateral edges for a thickness of about 2.5

μm. In the lowest density samples, we can discriminate between a fluid and a solid phase, where the fluid presents
the characteristics of a layered liquid along the vertical z dimension. In Fig. 3 we show the results of the local
order analysis for a low density system (top row, volume fraction φ = 0.015) and a dense sample (bottom row,
φ = 0.16). The very limited range of the q̄4 order parameter allows us to discard the hypothesis of a face centred
cubic crystal. In order to asses the nature of the solid phase, we use an additional order parameter w̄4, particularly
suitable for the distinction of hexagonal close packed structures (HCP) and FCC from BCC: in Fig. 3(b) we show
that no peak is detected in the HCP or FCC region, leading to the identification of the solid phase as a BCC phase.
We see that the state point at φ = 0.16 [(c) in Fig. 2] is identified as BCC while the theory predicts that it should
be FCC. Indeed we analysed all crystalline systems and found only BCC crystals. We speculate on the causes of
this discrepancy below.

5 Discussion

Our work extends the range of Yukawa parameters (Γs, κp) for particle-resolved studies of colloidal systems. We
have shown that the formation of low-density crystals in these systems [9, 35, 36] is compatible with Yukawa
theory, and that Debye screening lengths can run to many microns. The screened coupling parameter is found to
be Γs = 67, the largest value obtained previously was Γs = 16. We further use our parameterisation to estimate
the lowest freezing density attainable in the case of no salt (ρsalt → 0). This turns out to be around φ = 0.0004
for our system and a Debye length of some 14 μm. In principle, therefore it might be possible to produce crystals
of very much lower density still.

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org
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Fig. 3 (a,d) Three-dimensional rendering of the dense BCC crystal seen from the bottom of the sample for (a) volume frac-
tion φ = 0.015 [corresponding to point b in Fig. 2] and (d) volume fraction φ = 0.16 [point c in Fig. 2], with arbitrarily scaled
particles radii for better visualisation. In panel (d), a close-up of the ordered surface is highlighted. (b-c, e-f) Corresponding
local bond order parameter diagrams for the bcc phase of the two considered volume fractions: in panel (b) the distribution
P (q̄4, q̄6) is centred at moderate values corresponding to a solid region whose nature is determined via the P (q̄4, w̄4) distri-
bution to be of BCC nature. The same procedure is applied in panels (e,f) for the higher volume fraction, showing a higher
degree of order, particularly in the P (q̄4, q̄6) distribution.

We now consider possible reasons for the discrepancy of the polymorph we identified. One possibility might
be three-body and higher order effects, which could be significant for such long-range interaction potentials.
However as we have noted above simulations predict the opposite behaviour, of a suppression of the BCC phase
relative to the two-body Yukawa system and the formation of FCC instead [8,34]. Our primary speculation on the
other hand is that the system has not yet fully equilibrated. Indeed in some samples, the region close to the wall
appearing more crystalline, indicating a possible crystallisation front beginning at the wall of the same cell as has
a been observed in the hard sphere suspensions [43]. While homogenous crystallisation for our parameters has
yet to be studied in detail, we note that in Yukawa systems, although FCC is the favoured polymorph, BCC can
form first in the Ostwald rule of stages and indeed polymorph selection can even proceed through the metastable
hexagonal close-packed polymorph [44]. We believe that the same could occur here, although we emphasise that
the effect of the wall will be profound in the crystallisation mechanism and thus the homogenous crystallisation
studies of Desgranges and Delhomme [44] may not hold for our case.

However we note that our system is confined in a capillary of height 100 μm. Confinement has been considered
in comparable systems up to four layers [45]. There some preference was found for square symmetry which might
lead to BCC being favoured in our larger system. Thus it would be most interesting in the future to investigate the
crystallisation kinetics to see if the system indeed showed signs of approaching its FCC bulk equilibrium state.
However we emphasise that these systems are stable for around two days [9] which does place some limits on the
experimental time window. While no change is observed on the timescale of two days (here limit our experiments
to four hours), after a week the system was found to behave as of the contact potential βεy has dropped along
with the Debye length. This behaviour is inferred from the shift in the freezing boundary to higher colloid volume
fraction for older samples [9, 10]. Although desirable, an in-depth study of these ageing phenomena has yet to
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8 I. Rios de Anda et al.: Low-density crystals in charged colloids

be carried out. Possible sources of the change in the system over time include ion dissolution from the glass
capillary in which the system is confined.
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